organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*R*,*R*)-Ethylenebis[(2-methylphenyl)phenylphosphine oxide] ('o-Tolyl DiPAMPO')

Gary King,^a Enda Bergin,^a* Helge Müller-Bunz^b and Declan G. Gilheany^b

^aCeltic Catalysts Ltd, Nova Centre, Belfield Innovation Park, Dublin 4, Ireland, and ^bSchool of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland. Correspondence e-mail: enda.bergin@celticcatalysts.com

Received 14 June 2007; accepted 15 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.113; data-to-parameter ratio = 23.2.

In the course of studies on the synthesis of P-chiral phosphine ligands, a simple route to enantiopure DiPAMP analogues has been developed. The crystal structure of the title compound, $C_{28}H_{28}O_2P_2$, shows it to be the *R*,*R* enantiomer of the bisphosphine oxide, prior to reduction to the corresponding bisphosphine. This is believed to be the first example of a crystal structure of an enantiopure DiPAMPO-type compound.

Related literature

For related literature, see: Bergin et al. (2007); Gilheany (1992).

Experimental

Crystal data

 $\begin{array}{l} C_{28}H_{28}O_2P_2\\ M_r = 458.44\\ Orthorhombic, P2_12_12_1\\ a = 5.7941 \ (5) \ \text{\AA}\\ b = 17.2455 \ (15) \ \text{\AA}\\ c = 23.012 \ (2) \ \text{\AA} \end{array}$

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.717, T_{\rm max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.113$ S = 1.096693 reflections 289 parameters H-atom parameters constrained $V = 2299.4 (3) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 100 (2) K 0.50 \times 0.50 \times 0.05 mm

24918 measured reflections 6693 independent reflections 5820 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$

 $\begin{array}{l} \Delta \rho_{max} = 0.56 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.23 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983)} \\ \mbox{ Flack parameter: } -0.02 \mbox{ (8), 2860} \\ \mbox{ Friedel pairs} \end{array}$

Data collection: *SMART* (Bruker, 2003); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank James Morey for help with the structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2065).

References

- Bergin, E., O'Connor, C. T., Robinson, S. B., McGarrigle, E. M., O'Mahony, C. P. & Gilheany, D. G. (2007). J. Am. Chem. Soc. In the press.
- Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SMART (Version 5.629) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gilheany, D. G. (1992). Structure and Bonding in Tertiary Phosphine Chalcogenides. In Chemistry of Organophosphorus Compounds, Vol. 2, edited by F. R. Hartley, ch. 1, pp. 1–52. Chichester: Wiley.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3278 [doi:10.1107/S1600536807029479]

(*R*,*R*)-Ethylenebis[(2-methylphenyl)phenylphosphine oxide] (*o*-Tolyl DiPAMPO')

G. King, E. Bergin, H. Müller-Bunz and D. G. Gilheany

Comment

This crystal structure establishes that in our recently developed method for the construction of P-stereogenic phosphine oxides (Bergin *et al.*, 2007), the use of (-)-menthol gives rise to the *R*-configured phosphine oxide.

The PO and PC bond lengths are both at the high ends of the ranges expected for phosphine oxides, (147.5–149) and (179–181) pm respectively (Gilheany, 1992). The bond angles at phosphorus (CPO 111–113.5° and CPC 106–106.5°) show the expected deviation from the tetrahedral values consistent with the shorter PO distance (Gilheany, 1992).

Experimental

The title compound was synthesized by our recently developed method for the generation of P-stereogenic phosphorus compounds (Bergin *et al.*, 2007). The corresponding monophosphine oxide was produced in good ee (80%) from the reaction of the racemic phosphine with (-)-menthol in the presence of hexachloroacetone. It was subsequently oxidatively coupled to yield the bisphosphine oxide in 98% ee. X-ray quality crystals were obtained by crystallizing from benzene. To the best of our knowledge this is the first crystal structure of an enantiomerically pure DiPAMPO analogue.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

(*R*,*R*)-Ethylenebis[(2-methylphenyl)phenylphosphine oxide]

Crystal data

 $C_{28}H_{28}O_2P_2$ $M_r = 458.44$ Orthorhombic, $P2_12_12_1$ a = 5.7941 (5) Å b = 17.2455 (15) Å c = 23.012 (2) Å $D_x = 1.324 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5179 reflections $\theta = 2.5-30.8^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 100 (2) K V = 2299.4 (3) Å³ Z = 4 $F_{000} = 968$

Data collection

Bruker APEX CCD area-detector diffractometer	6693 independent reflections
Radiation source: fine-focus sealed tube	5820 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 100(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -8 \rightarrow 8$
$T_{\min} = 0.717, \ T_{\max} = 0.989$	$k = -24 \rightarrow 24$
24918 measured reflections	$l = -32 \rightarrow 32$

Lath, colourless

 $0.50 \times 0.50 \times 0.05 \text{ mm}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.113$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
6693 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
289 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map	Flack parameter: -0.02 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.33886 (9)	0.29398 (3)	0.21588 (2)	0.01480 (11)

01	0.5851 (3)	0.29881 (9)	0.19807 (6)	0.0211 (3)
C1	0.2408 (4)	0.19598 (11)	0.22940 (9)	0.0171 (4)
C2	0.0501 (4)	0.16736 (13)	0.19982 (10)	0.0265 (5)
H2A	-0.0349	0.2006	0.1748	0.032*
C3	-0.0176 (5)	0.09058 (14)	0.20643 (12)	0.0350 (6)
НЗА	-0.1479	0.0714	0.1859	0.042*
C4	0.1036 (4)	0.04265 (13)	0.24256 (11)	0.0318 (6)
H4A	0.0591	-0.0101	0.2465	0.038*
C5	0.2907 (5)	0.07055 (13)	0.27351 (10)	0.0308 (6)
H5A	0.3714	0.0369	0.2991	0.037*
C6	0.3631 (4)	0.14753 (12)	0.26775 (9)	0.0223 (4)
C7	0.5636 (5)	0.17576 (14)	0.30295 (11)	0.0333 (6)
H7A	0.6237	0.1331	0.3267	0.050*
H7B	0.5132	0.2181	0.3283	0.050*
H7C	0.6851	0.1945	0.2769	0.050*
C8	0.2867 (3)	0.34813 (11)	0.28190 (9)	0.0174 (4)
С9	0.4561 (4)	0.39914 (12)	0.30008 (10)	0.0251 (5)
H9A	0.5929	0.4052	0.2778	0.030*
C10	0.4266 (5)	0.44147 (14)	0.35085 (12)	0.0338 (6)
H10A	0.5431	0.4766	0.3631	0.041*
C11	0.2307 (5)	0.43278 (14)	0.38321 (11)	0.0315 (6)
H11A	0.2124	0.4612	0.4183	0.038*
C12	0.0594 (5)	0.38282 (13)	0.36513 (10)	0.0303 (5)
H12A	-0.0768	0.3772	0.3877	0.036*
C13	0.0843 (4)	0.34061 (13)	0.31418 (10)	0.0244 (5)
H13A	-0.0352	0.3069	0.3014	0.029*
C14	0.1437 (4)	0.33385 (12)	0.16196 (9)	0.0185 (4)
H14A	0.1397	0.2991	0.1277	0.022*
H14B	-0.0140	0.3362	0.1784	0.022*
C15	0.2170 (4)	0.41508 (11)	0.14268 (9)	0.0161 (4)
H15A	0.3778	0.4134	0.1282	0.019*
H15B	0.2120	0.4507	0.1764	0.019*
P2	0.02887 (8)	0.45118 (3)	0.08600 (2)	0.01335 (11)
02	-0.2200(2)	0.44574 (9)	0.10142 (6)	0.0188 (3)
C16	0.1036 (3)	0.39833 (11)	0.02016 (8)	0.0141 (4)
C17	0 2915 (3)	0 34797 (11)	0.01890 (9)	0.0169 (4)
H17A	0 3940	0 3461	0.0511	0.020*
C18	0 3312 (4)	0.30052(12)	-0.02873(9)	0.0209(4)
H18A	0.4604	0.2666	-0.0291	0.025*
C19	0.1830 (4)	0.30256 (12)	-0.07545(9)	0.0224 (4)
H19A	0.2045	0.2681	-0.1072	0.027*
C20	0.0026 (4)	0.35514 (12)	-0.07596(9)	0.0204 (4)
H20A	-0.0940	0.3581	-0.1093	0.024*
C21	-0.0409(3)	0.40357 (11)	-0.02912(9)	0.0171 (4)
C22	-0.2408(4)	0.45922 (12)	-0.03249(9)	0.0212 (4)
H22A	-0.3182	0.4535	-0.0701	0.032*
H22B	-0.1839	0.5125	-0.0284	0.032*
H22C	-0.3503	0.4479	-0.0012	0.032*
C23	0.1147 (3)	0.55056 (11)	0.07362 (8)	0.0151 (4)
	<- /	- ()	X - 7	- (-)

supplementary materials

C24	0.3295 (4)	0.57026 (12)	0.05179 (10)	0.0236 (4)
H24A	0.4410	0.5310	0.0448	0.028*
C25	0.3826 (4)	0.64718 (13)	0.04011 (10)	0.0265 (5)
H25A	0.5286	0.6603	0.0241	0.032*
C26	0.2232 (4)	0.70479 (13)	0.05178 (10)	0.0253 (5)
H26A	0.2609	0.7574	0.0442	0.030*
C27	0.0107 (4)	0.68623 (12)	0.07428 (11)	0.0281 (5)
H27A	-0.0982	0.7260	0.0823	0.034*
C28	-0.0452 (4)	0.60876 (12)	0.08534 (10)	0.0225 (4)
H28A	-0.1923	0.5958	0.1008	0.027*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0144 (2)	0.0150 (2)	0.0149 (2)	-0.00059 (19)	-0.00002 (19)	0.0026 (2)
O1	0.0179 (7)	0.0223 (7)	0.0233 (7)	-0.0003 (6)	0.0016 (6)	0.0029 (6)
C1	0.0193 (9)	0.0163 (9)	0.0155 (9)	-0.0014 (8)	0.0032 (7)	-0.0003 (7)
C2	0.0242 (11)	0.0252 (11)	0.0302 (12)	-0.0040 (9)	-0.0034 (10)	-0.0015 (9)
C3	0.0314 (13)	0.0284 (12)	0.0452 (15)	-0.0101 (10)	0.0038 (12)	-0.0093 (11)
C4	0.0398 (14)	0.0168 (10)	0.0387 (13)	-0.0074 (10)	0.0160 (11)	-0.0048 (10)
C5	0.0485 (15)	0.0187 (10)	0.0253 (12)	0.0056 (10)	0.0111 (11)	0.0037 (9)
C6	0.0302 (12)	0.0193 (9)	0.0175 (9)	0.0037 (9)	0.0033 (9)	0.0000 (8)
C7	0.0459 (15)	0.0262 (11)	0.0279 (12)	0.0052 (11)	-0.0154 (11)	0.0025 (9)
C8	0.0189 (9)	0.0139 (8)	0.0194 (9)	0.0021 (7)	-0.0022 (8)	0.0031 (8)
С9	0.0210 (10)	0.0240 (10)	0.0302 (11)	-0.0036 (9)	-0.0033 (9)	-0.0046 (9)
C10	0.0341 (13)	0.0286 (12)	0.0386 (13)	0.0017 (10)	-0.0104 (11)	-0.0124 (11)
C11	0.0479 (15)	0.0266 (12)	0.0200 (11)	0.0101 (11)	-0.0042 (10)	-0.0051 (9)
C12	0.0393 (14)	0.0255 (11)	0.0261 (12)	0.0032 (11)	0.0099 (10)	0.0017 (9)
C13	0.0277 (12)	0.0181 (9)	0.0274 (11)	-0.0025 (8)	0.0056 (9)	-0.0001 (9)
C14	0.0206 (10)	0.0187 (9)	0.0161 (9)	-0.0008 (8)	-0.0015 (8)	0.0049 (7)
C15	0.0182 (10)	0.0147 (9)	0.0153 (9)	-0.0005 (7)	-0.0011 (7)	0.0016 (7)
P2	0.0129 (2)	0.0126 (2)	0.0145 (2)	0.00024 (18)	0.00076 (18)	0.00101 (18)
O2	0.0156 (7)	0.0192 (7)	0.0217 (7)	0.0000 (6)	0.0028 (5)	-0.0001 (6)
C16	0.0153 (9)	0.0119 (8)	0.0151 (9)	-0.0020 (7)	0.0023 (7)	0.0012 (7)
C17	0.0175 (9)	0.0155 (9)	0.0177 (9)	0.0004 (7)	0.0007 (7)	0.0018 (8)
C18	0.0192 (9)	0.0186 (9)	0.0250 (10)	0.0026 (8)	0.0057 (9)	-0.0016 (8)
C19	0.0261 (11)	0.0217 (10)	0.0192 (10)	-0.0036 (9)	0.0067 (8)	-0.0044 (8)
C20	0.0214 (10)	0.0245 (10)	0.0152 (9)	-0.0056 (8)	0.0004 (8)	-0.0005 (8)
C21	0.0151 (9)	0.0173 (8)	0.0188 (9)	-0.0019 (7)	0.0016 (8)	0.0024 (7)
C22	0.0187 (10)	0.0248 (10)	0.0202 (10)	0.0020 (8)	-0.0026 (8)	0.0033 (9)
C23	0.0190 (9)	0.0128 (8)	0.0133 (8)	-0.0011 (8)	-0.0022 (7)	0.0005 (7)
C24	0.0227 (10)	0.0186 (9)	0.0296 (11)	0.0007 (9)	0.0045 (9)	-0.0008 (8)
C25	0.0269 (12)	0.0216 (10)	0.0309 (12)	-0.0042 (9)	0.0025 (9)	0.0022 (9)
C26	0.0310 (12)	0.0143 (9)	0.0307 (11)	-0.0020 (9)	-0.0093 (9)	0.0051 (9)
C27	0.0281 (12)	0.0177 (9)	0.0384 (13)	0.0069 (9)	-0.0040 (10)	-0.0009 (9)
C28	0.0179 (9)	0.0198 (9)	0.0296 (11)	0.0026 (8)	0.0002 (9)	0.0002 (9)

Geometric parameters (Å, °)

P1C8 1.809 (2)C15H15A 0.9900 P1C1 1.810 (2)C15H15B 0.9900 P1-C14 1.814 (2) $P202$ 1.4878 (14)C1C2 1.388 (3) $P2C16$ 1.820 (2)C1C6 1.407 (3) $P2C23$ 1.877 (2)C2C3 1.389 (3)C16C17 1.413 (3)C3C4 0.9500 C16C21 1.413 (3)C3C4 1.367 (4)C17C18 1.387 (3)C3H3A 0.9500 C18C19 1.376 (3)C4C5 1.383 (3)C19C20 1.384 (3)C5H5A 0.9500 C19-H19A 0.9500 C5C6 1.398 (3)C20C21 1.387 (3)C7-H7A 0.9800 C20-H20A 0.9500 C7-H7B 0.9800 C21-H22A 0.9800 C8C13 1.394 (3)C22-H22A 0.9800 C8-C9 1.383 (3)C22-H22A 0.9800 C8-C9 1.383 (3)C22-H22A 0.9800 C9-C10 1.388 (3)C23-C28 1.392 (3)C10-C11 1.366 (4)C24-C25 1.383 (3)C11-H1A 0.9500 C25-H25A 0.9500 C12-C13 1.387 (3)C26-C2	P1—O1	1.4870 (15)	C15—P2	1.810 (2)
P1C1 $1.810 (2)$ C15H15B 0.9900 P1C14 $1.814 (2)$ $P2O2$ $1.4878 (14)$ C1C2 $1.388 (3)$ $P2C16$ $1.820 (2)$ C2C3 $1.389 (3)$ C16C17 $1.393 (3)$ C2C3 $1.389 (3)$ C16C17 $1.393 (3)$ C3C4 0.9500 C17C18 $1.387 (3)$ C3C4 $1.367 (4)$ C17C18 $1.387 (3)$ C3C4 $1.367 (4)$ C17C18 0.9500 C4C5 $1.383 (4)$ C18C19 $1.376 (3)$ C4H4A 0.9500 C19H19A 0.9500 C5C6 $1.398 (3)$ C19C20 $1.384 (3)$ C5H5A 0.9500 C19H19A 0.9500 C6C7 $1.498 (3)$ C20C21 $1.387 (3)$ C7H7B 0.9800 C21H22A 0.9800 C7H7B 0.9800 C21-H22A 0.9800 C8C9 $1.338 (3)$ C23C24 $1.384 (3)$ C9C10 $1.338 (3)$ C23C24 $1.384 (3)$ C9H9A 0.9500 C23C28 $1.392 (3)$ C10C11 $1.366 (4)$ C24C25 $1.388 (3)$ C10H10A 0.9500 C25H25A 0.9500 C12-C13 $1.379 (4)$ C25C26 $1.383 (3)$ C12-H12A 0.9500 C25H25A 0.9500 C12-H13A 0.9500 C26H26A 0.9500 C12-H14 0.9500 C26H26A 0.9500 C12-H14A 0.9500 C26H26A 0.9500 C13-H13A 0.9500 C26-	P1—C8	1.809 (2)	C15—H15A	0.9900
P1C14 $1.814 (2)$ $P2O2$ $1.4878 (14)$ C1C2 $1.388 (3)$ $P2C16$ $1.820 (2)$ C1C6 $1.407 (3)$ $P2C23$ $1.807 (2)$ C2C3 $1.389 (3)$ C16C17 $1.393 (3)$ C2H2A 0.9500 C16C21 $1.413 (3)$ C3H3A 0.9500 C17C18 $1.387 (3)$ C3H3A 0.9500 C18C19 $1.376 (3)$ C4C5 $1.383 (4)$ C18C19 $1.376 (3)$ C4C5 $1.383 (4)$ C18C19 $1.376 (3)$ C5C6 $1.398 (3)$ C19C20 $1.384 (3)$ C5H5A 0.9500 C19H19A 0.9500 C5C6 $1.498 (3)$ C20C21 $1.387 (3)$ C7-H7A 0.9800 C20-H20A 0.9500 C7-H7B 0.9800 C21C22 $1.506 (3)$ C7-H7B 0.9800 C22-H22A 0.9800 C8-C9 $1.383 (3)$ C22-H22A 0.9800 C8-C9 $1.383 (3)$ C22-H22A 0.9800 C9-C10 $1.388 (3)$ C23C24 $1.384 (3)$ C9-H10A 0.9500 C24-C25 $1.382 (3)$ C10-C11 $1.366 (4)$ C24-C25 $1.383 (3)$ C10-H10A 0.9500 C2-H2A 0.9500 C12-C13 $1.387 (3)$ C26-C27 $1.374 (3)$ C12-H12A 0.9500 C27-C28 $1.398 (3)$ C1-H14A 0.9900 C28-H28A 0.9500 C14-H14B 0.9900 C26-H26A 0.9500 C14-H14B 0.9900 C26-H26A	P1—C1	1.810 (2)	C15—H15B	0.9900
C1-C2 1.388 (3) $P2-C16$ 1.820 (2) $C1-C6$ 1.407 (3) $P2-C23$ 1.887 (2) $C2-C3$ 1.389 (3) $C16-C17$ 1.393 (3) $C2-H2A$ 0.9500 $C16-C21$ 1.413 (3) $C3-C4$ 1.367 (4) $C17-C18$ 1.387 (3) $C3-C4$ 1.367 (4) $C17-C18$ 1.387 (3) $C4-C5$ 1.383 (4) $C18-C19$ 1.376 (3) $C4-H4A$ 0.9500 $C18-H18A$ 0.9500 $C5-C6$ 1.398 (3) $C19-C20$ 1.384 (3) $C5-H5A$ 0.9500 $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C21-C22$ 1.506 (3) $C7-H7B$ 0.9800 $C22-H22A$ 0.9800 $C8-C9$ 1.338 (3) $C22-H22A$ 0.9800 $C8-C9$ 1.388 (3) $C23-C24$ 1.384 (3) $C9-C10$ 1.388 (3) $C23-C24$ 1.388 (3) $C10-C11$ 1.366 (4)	P1—C14	1.814 (2)	P2—O2	1.4878 (14)
C1C61.407 (3)P2C231.807 (2)C2C31.389 (3)C16C171.393 (3)C2H2A0.9500C16C211.413 (3)C3C41.367 (4)C17C181.387 (3)C3H3A0.9500C17H17A0.9500C4C51.383 (4)C18C191.376 (3)C4H4A0.9500C18H18A0.9500C5C61.398 (3)C19C201.384 (3)C5H5A0.9500C19H19A0.9500C6C71.498 (3)C20C211.387 (3)C7H7A0.9800C21H20A0.9500C7H7A0.9800C21C221.506 (3)C7H7C0.9800C22-H22A0.9800C8C131.394 (3)C22-H22A0.9800C8C91.383 (3)C23C241.384 (3)C9C101.388 (3)C23C241.384 (3)C9C111.366 (4)C24C251.388 (3)C10C111.366 (4)C24C251.383 (3)C10C131.387 (3)C26C271.374 (3)C12-C131.387 (3)C26C271.374 (3)C12-C131.387 (3)C26C271.374 (3)C12-H12A0.9500C27H27A0.9500C13-H13A0.9500C27H27A0.9500C13-H13A0.9500C27H27A0.9500C14-H14B0.9900C26-H26A0.9500C14-H14A0.9900C26-H26A0.9500C14-H14A0.9900C26-H25A0.9500 <td>C1—C2</td> <td>1.388 (3)</td> <td>P2—C16</td> <td>1.820 (2)</td>	C1—C2	1.388 (3)	P2—C16	1.820 (2)
C2-C31.389 (3) $C16-C17$ 1.393 (3) $C2-H2A$ 0.9500 $C16-C21$ 1.413 (3) $C3-H2A$ 1.367 (4) $C17-C18$ 1.387 (3) $C3-H3A$ 0.9500 $C17-H17A$ 0.9500 $C4-C5$ 1.383 (4) $C18-C19$ 1.376 (3) $C4-H4A$ 0.9500 $C18-H18A$ 0.9500 $C5-C6$ 1.398 (3) $C19-C20$ 1.384 (3) $C5-H5A$ 0.9500 $C19-H19A$ 0.9500 $C6-C7$ 1.498 (3) $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C22-H22A$ 0.9800 $C7-H7C$ 0.9800 $C22-H22A$ 0.9800 $C8-C13$ 1.394 (3) $C22-H22A$ 0.9800 $C8-C9$ 1.383 (3) $C23-C24$ 1.384 (3) $C9-H9A$ 0.9500 $C23-C28$ 1.392 (3) $C10-C11$ 1.366 (4) $C24-C25$ 1.388 (3) $C10-H10A$ 0.9500 $C25-H25A$ 0.9500 $C1-C12$ 1.377 (4) $C25-C26$ 1.383 (3) $C12-C13$ 1.387 (3) $C26-C27$ 1.374 (3) $C12-C13$ 1.387 (3) $C27-H27A$ 0.9500 $C14-H14A$ 0.9500 $C27-H28A$ 0.9500 $C14-C15$ 1.530 (3) $C27-H27A$ 0.9500 $C14-H14B$ 0.9900 $C26-H26A$ 0.9500 $C14-C15$ 1.384 (9) $C14-C15-H15A$ 109.5 $C1-C1-H10A$ 0.9500 $C27-H27A$ 0.9500 $C12-C14$ 11.28 (9) $C14-C15-H15A$ 109.5	C1—C6	1.407 (3)	P2—C23	1.807 (2)
C2-H2A0.9500 $C16-C21$ 1.413 (3) $C3-C4$ 1.367 (4) $C17-C18$ 1.387 (3) $C3-H3A$ 0.9500 $C17-H17A$ 0.9500 $C4-C5$ 1.383 (4) $C18-C19$ 1.376 (3) $C4-H4A$ 0.9500 $C18-H18A$ 0.9500 $C5-C6$ 1.398 (3) $C19-C20$ 1.384 (3) $C5-H5A$ 0.9500 $C19-H19A$ 0.9500 $C6-C7$ 1.498 (3) $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C20-H20A$ 0.9500 $C7-H7A$ 0.9800 $C22-H22A$ 0.9800 $C7-H7C$ 0.9800 $C22-H22A$ 0.9800 $C9-C13$ 1.394 (3) $C22-H22B$ 0.9800 $C9-C10$ 1.383 (3) $C22-H22A$ 0.9800 $C9-C10$ 1.383 (3) $C22-H22A$ 0.9800 $C9-C10$ 1.383 (3) $C22-H22A$ 0.9800 $C9-C10$ 1.387 (3) $C2-C24$ 1.384 (3) $C9-H9A$ 0.9500 $C24-H24A$ 0.9500 $C1-C11$ 1.366 (4) $C24-C25$ 1.388 (3) $C10-C11$ 1.366 (4) $C24-C25$ 1.383 (3) $C1-H10A$ 0.9500 $C25-H25A$ 0.9500 $C12-C13$ 1.387 (3) $C26-C27$ 1.374 (3) $C12-C13$ 1.387 (3) $C26-H26A$ 0.9500 $C14-H14B$ 0.9900 $C27-H27A$ 0.9500 $C14-H14B$ 0.9500 $C27-H27A$ 0.9500 $C14-H14B$ 0.9500 $C27-H27A$ 0.9500 $C14-H14B$ 0.9500 $C27-H27A$ 0.9500 $C14-H14B$ <t< td=""><td>C2—C3</td><td>1.389 (3)</td><td>C16—C17</td><td>1.393 (3)</td></t<>	C2—C3	1.389 (3)	C16—C17	1.393 (3)
C3-C4 $1.367 (4)$ C17-C18 $1.387 (3)$ C3-H3A0.9500C17-H17A0.9500C4-C5 $1.383 (4)$ C18-C19 $1.376 (3)$ C4-H4A0.9500C18-H18A0.9500C5-C6 $1.398 (3)$ C19-C20 $1.384 (3)$ C5-H5A0.9500C19-H19A0.9500C6-C7 $1.498 (3)$ C20-C21 $1.387 (3)$ C7-H7A0.9800C20-H20A0.9500C7-H7B0.9800C22-H22A0.9800C8-C13 $1.394 (3)$ C22-H22A0.9800C8-C9 $1.383 (3)$ C22-H22C0.9800C9-C10 $1.388 (3)$ C23-C24 $1.384 (3)$ C9-H9A0.9500C24-C25 $1.388 (3)$ C10-C11 $1.366 (4)$ C24-C25 $1.388 (3)$ C10-C11 $1.366 (4)$ C24-C25 $1.383 (3)$ C10-C11 $1.366 (4)$ C24-C25 $1.383 (3)$ C11-C12 $1.379 (4)$ C25-C26 $1.383 (3)$ C11-C12 $1.379 (4)$ C25-C26 $1.383 (3)$ C12-C13 $1.387 (3)$ C26-C27 $1.374 (3)$ C12-H12A0.9500C27-H27A0.9500C13-H13A0.9500C27-C28 $1.398 (3)$ C14-C15 $1.530 (3)$ C27-H27A0.9500C14-H14B0.9900C8-H28A0.9500C13-H13A0.9500C14-C15-H15A109.5O1-P1-C1 $11.364 (9)$ C14-C15-H15A109.5O1-P1-C24 $106.57 (9)$ P2-C15-H15B109.5C8-P1-C14 $106.57 ($	C2—H2A	0.9500	C16—C21	1.413 (3)
C3—H3A0.9500C17—H17A0.9500C4—C51.383 (4)C18—C191.376 (3)C4—H4A0.9500C18—H18A0.9500C5—C61.398 (3)C19—C201.384 (3)C5—H5A0.9500C19—H19A0.9500C6—C71.498 (3)C20—C211.387 (3)C7—H7A0.9800C20—H20A0.9500C7—H7C0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C8—C91.383 (3)C22—H22C0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H0A0.9500C24—H24A0.9500C10—C111.366 (4)C24—C251.388 (3)C10—C111.366 (4)C24—C251.388 (3)C11—C121.379 (4)C25—C261.383 (3)C11—C121.379 (4)C25—C261.383 (3)C12—H12A0.9500C24—H2A0.9500C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C27—H27A0.9500C13—H13A0.9500C27—H27A0.9500C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—H15A109.5O1—P1—C1113.64 (9)C14—C15—H15A109.5O1—P1—C14106.57 (9)P2—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C14—C14105.93 (9)P2—C15—H15B109.5C14—C14 <td>C3—C4</td> <td>1.367 (4)</td> <td>C17—C18</td> <td>1.387 (3)</td>	C3—C4	1.367 (4)	C17—C18	1.387 (3)
C4—C51.383 (4)C18—C191.376 (3)C4—H4A0.9500C18—H18A0.9500C5—C61.398 (3)C19—C201.384 (3)C5—H5A0.9500C19—H19A0.9500C6—C71.498 (3)C20—C211.387 (3)C7—H7A0.9800C21—C221.506 (3)C7—H7B0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C8—C91.383 (3)C22—H22C0.9800C9—C101.388 (3)C23—C241.384 (3)C10—C111.366 (4)C24—C251.388 (3)C10—C111.366 (4)C24—C251.388 (3)C10—C111.367 (3)C25—C261.383 (3)C10—C111.379 (4)C25—C261.383 (3)C12—H12A0.9500C25—H25A0.9500C12—C131.387 (3)C26—C271.374 (3)C12—C140.9500C26—H26A0.9500C14—C151.530 (3)C27—C281.398 (3)C14—C151.530 (3)C27—C281.398 (3)C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—H15A109.5O1—P1—C111.364 (9)C14—C15—H15B109.5C8—P1—C1106.57 (9)P2—C15—H15B109.5C8—P1—C1106.57 (9)P2—C15—H15B109.5C14—C15<—H15B	С3—НЗА	0.9500	С17—Н17А	0.9500
C4—H4A0.9500C18—H18A0.9500C5—C61.398 (3)C19—C201.384 (3)C5—H5A0.9500C19—H19A0.9500C6—C71.498 (3)C20—C211.387 (3)C7—H7A0.9800C20—H20A0.9500C7—H7B0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H9A0.9500C23—C281.392 (3)C10—C111.366 (4)C24—C251.388 (3)C10—C111.366 (4)C24—C251.383 (3)C10—C111.366 (4)C25—C261.383 (3)C10—C111.366 (4)C25—C261.383 (3)C10—C111.366 (4)C25—C261.383 (3)C10—C111.366 (4)C25—C261.383 (3)C11—C121.379 (4)C25—C261.383 (3)C12—C131.387 (3)C26—C271.374 (3)C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C25—H25A0.9500C14—C151.530 (3)C27—C281.398 (3)C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C8—P1—C14106.91 (9)H15A—C15—H15B108.0 <td>C4—C5</td> <td>1.383 (4)</td> <td>C18—C19</td> <td>1.376 (3)</td>	C4—C5	1.383 (4)	C18—C19	1.376 (3)
C5-C61.398 (3)C19-C201.384 (3)C5-H5A0.9500C19-H19A0.9500C6-C71.498 (3)C20-C211.387 (3)C7-H7A0.9800C20-H20A0.9500C7-H7B0.9800C21-C221.506 (3)C7-H7C0.9800C22-H22A0.9800C8-C131.394 (3)C22-H22B0.9800C8-C91.383 (3)C23-C241.384 (3)C9-H9A0.9500C23-C241.388 (3)C10-C111.366 (4)C24-C251.388 (3)C10-C111.366 (4)C24-C251.388 (3)C10-C111.379 (4)C25-C261.383 (3)C11-C121.379 (4)C25-C261.383 (3)C12-C131.387 (3)C26-C271.374 (3)C12-C131.387 (3)C26-C271.374 (3)C12-H12A0.9500C27-C281.398 (3)C14-C151.530 (3)C27-H27A0.9500C14-H14A0.9900C28-H28A0.9500C14-H14A0.9900C28-H28A0.9500C14-H14A0.9900C28-H28A0.9500C14-H14A0.9900C14-C15-H15A109.5C8-P1-C1116.67 (9)P2-C15-H15A109.5O1-P1-C4112.86 (9)C14-C15-H15B109.5C8-P1-C14106.57 (9)P2-C15-H15B109.5C1-P1-C14112.86 (9)C14-C15-H15B109.5C2-C1-C6119.8 (2)02-P2-C15112.96 (9)C2-C1-C6119.8 (16)02-P2-C15112.96 (9	C4—H4A	0.9500	C18—H18A	0.9500
C5—H5A0.9500C19—H19A0.9500C6—C71.498 (3)C20—C211.387 (3)C7—H7A0.9800C20—H20A0.9500C7—H7B0.9800C21—C221.506 (3)C7—H7C0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H9A0.9500C23—C281.392 (3)C10—C111.366 (4)C24—C251.388 (3)C10—C111.366 (4)C24—C251.388 (3)C10—H10A0.9500C25—H25A0.9500C11—C121.379 (4)C25—C261.383 (3)C12—H12A0.9500C26—H25A0.9500C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C26—H26A0.9500C13—H13A0.9500C27—C281.398 (3)C14—C151.530 (3)C27—C281.398 (3)C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15A109.5C8—P1—C14112.86 (9)C14—C15—H15B109.5C1—P1—C14112.86 (9)C14—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B109.5C2—C1—C4119.82 (2)02—P2—C15112.96 (9) </td <td>C5—C6</td> <td>1.398 (3)</td> <td>C19—C20</td> <td>1.384 (3)</td>	C5—C6	1.398 (3)	C19—C20	1.384 (3)
C6-C7 $1.498(3)$ C20C21 $1.387(3)$ C7-H7A0.9800C20-H20A0.9500C7-H7B0.9800C21C22 $1.506(3)$ C7-H7C0.9800C22-H22A0.9800C8-C13 $1.394(3)$ C22-H22B0.9800C8-C9 $1.383(3)$ C23C24 $1.384(3)$ C9-H9A0.9500C23C28 $1.392(3)$ C10-C11 $1.366(4)$ C24C25 $1.388(3)$ C10-C11 $1.366(4)$ C24C25 $1.383(3)$ C10-H10A0.9500C24H24A0.9500C11-C12 $1.379(4)$ C25C26 $1.383(3)$ C12-C13 $1.387(3)$ C26C27 $1.374(3)$ C12-H12A0.9500C27C28 $1.398(3)$ C14-H14A0.9500C27C28 $1.398(3)$ C14-C15 $1.530(3)$ C27H27A0.9500C14-H14B0.9900C28H28A0.9500C14-H14B0.9900C28H28A0.9500C14-H14B0.9900C28H28A0.9500C14-H14B0.9900C28H28A0.9500C14-H14B0.9900C28H28A0.9500C14-H14B0.9900C14C15H15A109.5C8-P1-C1106.57(9)P2C15H15B109.5C8-P1-C14106.59(9)P2C15H15B109.5C1-P1-C14106.01(9)H15AC15H15B109.5C1-P1-C14105.93(9)P2C15H15B109.6C2-C1-C6119.8(2)02P2C15112.96(9)C2-C1-C1-P1119.8(2	С5—Н5А	0.9500	C19—H19A	0.9500
C7—H7A0.9800C20—H20A0.9500C7—H7B0.9800C21—C221.506 (3)C7—H7C0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C8—C91.383 (3)C22—H22C0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H9A0.9500C23—C281.392 (3)C10—C111.366 (4)C24—C251.388 (3)C10—C111.366 (4)C25—C261.383 (3)C11—H10A0.9500C25—H25A0.9500C11—C121.379 (4)C25—C261.383 (3)C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C25—H25A0.9500C13—H13A0.9500C27—C281.398 (3)C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—H15A109.5O1—P1—C8111.28 (9)C14—C15—H15A109.5O1—P1—C14106.57 (9)P2—C15—H15A109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)02—P2—C15112.96 (9)C2—C1—P1119.83 (16)02—P2—C16113.42 (9)	C6—C7	1.498 (3)	C20—C21	1.387 (3)
C7—H7B0.9800C21—C221.506 (3)C7—H7C0.9800C22—H22A0.9800C8—C131.394 (3)C22—H22B0.9800C8—C91.383 (3)C22—H22C0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H9A0.9500C23—C281.392 (3)C10—C111.366 (4)C24—C251.388 (3)C10—H10A0.9500C24—H24A0.9500C11—C121.379 (4)C25—C261.383 (3)C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C26—H26A0.9500C13—H13A0.9500C27—C281.398 (3)C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C28—H28A0.9500C14—C15113.64 (9)C14—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15A109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14112.86 (9)C14—C15—H15B109.5C1—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B109.5C2—C1—C16119.8 (2)02—P2—C16113.42 (9)	С7—Н7А	0.9800	C20—H20A	0.9500
C7-H7C0.9800 $C22-H22A$ 0.9800 $C8-C13$ 1.394 (3) $C22-H22B$ 0.9800 $C8-C9$ 1.383 (3) $C22-H22C$ 0.9800 $C9-C10$ 1.388 (3) $C23-C24$ 1.384 (3) $C9-H9A$ 0.9500 $C23-C28$ 1.392 (3) $C10-C11$ 1.366 (4) $C24-C25$ 1.388 (3) $C10-H10A$ 0.9500 $C24-H24A$ 0.9500 $C11-C12$ 1.379 (4) $C25-C26$ 1.383 (3) $C12-C13$ 1.387 (3) $C26-C27$ 1.374 (3) $C12-H12A$ 0.9500 $C26-H26A$ 0.9500 $C12-H12A$ 0.9500 $C27-C28$ 1.398 (3) $C14-C15$ 1.530 (3) $C27-H27A$ 0.9500 $C14-H14B$ 0.9900 $C28-H28A$ 0.9500 $C14-H14B$ 0.9900 $C14-C15-H15A$ 109.5 $O1-P1-C8$ 111.28 (9) $C14-C15-H15A$ 109.5 $O1-P1-C1$ 106.57 (9) $P2-C15-H15B$ 109.5 $O1-P1-C14$ 105.93 (9) $C14-C15-H15B$ 109.5 $C1-P1-C14$ 106.01 (9)H15A-C15-H15B108.0 $C2-C1-C6$ 119.82 (16) $O2-P2-C16$ 113.42 (9)	С7—Н7В	0.9800	C21—C22	1.506 (3)
C8—C13 $1.394 (3)$ C22—H22B 0.9800 C8—C9 $1.383 (3)$ C22—H22C 0.9800 C9—C10 $1.388 (3)$ C23—C24 $1.384 (3)$ C9—H9A 0.9500 C23—C28 $1.392 (3)$ C10—C11 $1.366 (4)$ C24—C25 $1.388 (3)$ C10—H10A 0.9500 C24—H24A 0.9500 C11—C12 $1.379 (4)$ C25—C26 $1.383 (3)$ C11—H11A 0.9500 C25—H25A 0.9500 C12—C13 $1.387 (3)$ C26—C27 $1.374 (3)$ C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 $1.398 (3)$ C14—C15 $1.530 (3)$ C27—H27A 0.9500 C14—H14B 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—H15A 109.5 O1—P1—C8 $111.28 (9)$ C14—C15—H15A 109.5 O1—P1—C14 $106.57 (9)$ P2—C15—H15B 109.5 C8—P1—C14 $105.93 (9)$ C14—C15—H15B 109.5 C1—P1—C14 $106.01 (9)$ $H15A$ —C15—H15B 108.0 C2—C1—C6 $119.8 (16)$ 02 —P2—C16 $113.42 (9)$	С7—Н7С	0.9800	C22—H22A	0.9800
C8—C91.383 (3)C22—H22C0.9800C9—C101.388 (3)C23—C241.384 (3)C9—H9A0.9500C23—C281.392 (3)C10—C111.366 (4)C24—C251.388 (3)C10—H10A0.9500C24—H24A0.9500C11—C121.379 (4)C25—C261.383 (3)C11—H11A0.9500C25—H25A0.9500C12—C131.387 (3)C26—C271.374 (3)C12—H12A0.9500C26—H26A0.9500C13—H13A0.9500C27—C281.398 (3)C14—C151.530 (3)C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500O1—P1—C18111.28 (9)C14—C15—P2110.90 (13)O1—P1—C14106.57 (9)P2—C15—H15A109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.91 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)O2—P2—C16112.96 (9)C2—C1—P1119.83 (16)O2—P2—C16113.42 (9)	C8—C13	1.394 (3)	C22—H22B	0.9800
C9—C10 $1.388 (3)$ C23—C24 $1.384 (3)$ C9—H9A0.9500C23—C28 $1.392 (3)$ C10—C11 $1.366 (4)$ C24—C25 $1.388 (3)$ C10—H10A0.9500C24—H24A0.9500C11—C12 $1.379 (4)$ C25—C26 $1.383 (3)$ C11—H11A0.9500C25—H25A0.9500C12—C13 $1.387 (3)$ C26—C27 $1.374 (3)$ C12—H12A0.9500C26—H26A0.9500C13—H13A0.9500C27—C28 $1.398 (3)$ C14—C15 $1.530 (3)$ C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500O1—P1—C8111.28 (9)C14—C15—H15A109.5O1—P1—C1113.64 (9)C14—C15—H15A109.5O1—P1—C14112.86 (9)C14—C15—H15B109.5C8—P1—C1106.57 (9)P2—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)02—P2—C15112.96 (9)C2—C1—C1119.83 (16)02—P2—C16113.42 (9)	C8—C9	1.383 (3)	C22—H22C	0.9800
C9—H9A 0.9500 C23—C28 $1.392 (3)$ C10—C11 $1.366 (4)$ C24—C25 $1.388 (3)$ C10—H10A 0.9500 C24—H24A 0.9500 C11—C12 $1.379 (4)$ C25—C26 $1.383 (3)$ C11—H11A 0.9500 C25—H25A 0.9500 C12—C13 $1.387 (3)$ C26—C27 $1.374 (3)$ C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 $1.398 (3)$ C14—C15 $1.530 (3)$ C27—H27A 0.9500 C14—H14B 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—H15A 109.5 O1—P1—C8 $111.28 (9)$ C14—C15—H15A 109.5 O1—P1—C1 $113.64 (9)$ C14—C15—H15A 109.5 O1—P1—C14 $106.57 (9)$ P2—C15—H15B 109.5 C8—P1—C14 $105.93 (9)$ P2—C15—H15B 109.5 C1—P1—C14 $106.01 (9)$ H15A—C15—H15B 108.0 C2—C1—C6 $119.8 (2)$ 02 —P2—C16 $113.42 (9)$	C9—C10	1.388 (3)	C23—C24	1.384 (3)
C10—C11 $1.366 (4)$ C24—C25 $1.388 (3)$ C10—H10A0.9500C24—H24A0.9500C11—C12 $1.379 (4)$ C25—C26 $1.383 (3)$ C11—H11A0.9500C25—H25A0.9500C12—C13 $1.387 (3)$ C26—C27 $1.374 (3)$ C12—H12A0.9500C26—H26A0.9500C13—H13A0.9500C27—C28 $1.398 (3)$ C14—C15 $1.530 (3)$ C27—H27A0.9500C14—H14B0.9900C28—H28A0.9500C14—H14B0.9900C14—C15—P2110.90 (13)O1—P1—C8111.28 (9)C14—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15A109.5O1—P1—C14112.86 (9)C14—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)O2—P2—C16113.42 (9)	С9—Н9А	0.9500	C23—C28	1.392 (3)
C10—H10A 0.9500 C24—H24A 0.9500 C11—C12 1.379 (4)C25—C26 1.383 (3)C11—H11A 0.9500 C25—H25A 0.9500 C12—C13 1.387 (3)C26—C27 1.374 (3)C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 1.398 (3)C14—C15 1.530 (3)C27—H27A 0.9500 C14—H14A 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—P2 110.90 (13)O1—P1—C8 111.28 (9)C14—C15—H15A 109.5 C8—P1—C1 106.57 (9)P2—C15—H15A 109.5 O1—P1—C14 112.86 (9)C14—C15—H15B 109.5 C8—P1—C14 105.93 (9)P2—C15—H15B 109.5 C1—P1—C14 106.01 (9) $H15A$ —C15—H15B 108.0 C2—C1—C6 119.8 (2) 02 —P2—C15 112.96 (9)C2—C1—P1 119.83 (16) 02 —P2—C16 113.42 (9)	C10-C11	1.366 (4)	C24—C25	1.388 (3)
C11—C12 1.379 (4)C25—C26 1.383 (3)C11—H11A 0.9500 C25—H25A 0.9500 C12—C13 1.387 (3)C26—C27 1.374 (3)C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 1.398 (3)C14—C15 1.530 (3)C27—H27A 0.9500 C14—H14A 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—P2 110.90 (13)O1—P1—C8 111.28 (9)C14—C15—H15A 109.5 C8—P1—C1 106.57 (9)P2—C15—H15A 109.5 O1—P1—C14 112.86 (9)C14—C15—H15B 109.5 C8—P1—C14 106.93 (9)P2—C15—H15B 109.5 C1—P1—C14 106.01 (9)H15A—C15—H15B 108.0 C2—C1—C6 119.8 (2) 02 —P2—C16 113.42 (9)	C10—H10A	0.9500	C24—H24A	0.9500
C11—H11A 0.9500 C25—H25A 0.9500 C12—C13 $1.387 (3)$ C26—C27 $1.374 (3)$ C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 $1.398 (3)$ C14—C15 $1.530 (3)$ C27—H27A 0.9500 C14—H14A 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—P2 $110.90 (13)$ O1—P1—C8 $111.28 (9)$ C14—C15—H15A 109.5 C8—P1—C1 $106.57 (9)$ P2—C15—H15A 109.5 O1—P1—C14 $112.86 (9)$ C14—C15—H15B 109.5 C8—P1—C14 $106.93 (9)$ P2—C15—H15B 109.5 C1—P1—C14 $106.01 (9)$ H15A—C15—H15B 108.0 C2—C1—C6 $119.8 (2)$ 02 —P2—C16 $113.42 (9)$	C11—C12	1.379 (4)	C25—C26	1.383 (3)
C12C13 $1.387 (3)$ $C26C27$ $1.374 (3)$ $C12H12A$ 0.9500 $C26H26A$ 0.9500 $C13H13A$ 0.9500 $C27C28$ $1.398 (3)$ $C14C15$ $1.530 (3)$ $C27H27A$ 0.9500 $C14H14A$ 0.9900 $C28H28A$ 0.9500 $C14H14B$ 0.9900 $C14C15P2$ $110.90 (13)$ $O1P1C8$ $111.28 (9)$ $C14C15H15A$ 109.5 $C8P1C1$ $106.57 (9)$ $P2C15H15A$ 109.5 $C8P1C14$ $105.93 (9)$ $P2C15H15B$ 109.5 $C8P1C14$ $105.93 (9)$ $P2C15H15B$ 109.5 $C1P1C14$ $106.01 (9)$ $H15AC15H15B$ 108.0 $C2C1C6$ $119.8 (2)$ $O2P2C16$ $113.42 (9)$	C11—H11A	0.9500	C25—H25A	0.9500
C12—H12A 0.9500 C26—H26A 0.9500 C13—H13A 0.9500 C27—C28 1.398 (3)C14—C15 1.530 (3)C27—H27A 0.9500 C14—H14A 0.9900 C28—H28A 0.9500 C14—H14B 0.9900 C14—C15—P2 110.90 (13)O1—P1—C8 111.28 (9)C14—C15—H15A 109.5 C8—P1—C1 106.57 (9)P2—C15—H15A 109.5 O1—P1—C14 112.86 (9)C14—C15—H15B 109.5 C8—P1—C14 105.93 (9)P2—C15—H15B 109.5 C1—P1—C14 106.01 (9)H15A—C15—H15B 108.0 C2—C1—C6 119.8 (2) 02 —P2—C15 112.96 (9)C2—C1—P1 119.83 (16) 02 —P2—C16 113.42 (9)	C12—C13	1.387 (3)	C26—C27	1.374 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—H12A	0.9500	C26—H26A	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13—H13A	0.9500	C27—C28	1.398 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15	1.530 (3)	С27—Н27А	0.9500
C14—H14B 0.9900 O1—P1—C8111.28 (9)C14—C15—P2110.90 (13)O1—P1—C1113.64 (9)C14—C15—H15A109.5C8—P1—C1106.57 (9)P2—C15—H15A109.5O1—P1—C14112.86 (9)C14—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)O2—P2—C15112.96 (9)C2—C1—P1119.83 (16)O2—P2—C16113.42 (9)	C14—H14A	0.9900	C28—H28A	0.9500
O1-P1-C8 111.28 (9) $C14-C15-P2$ 110.90 (13) $O1-P1-C1$ 113.64 (9) $C14-C15-H15A$ 109.5 $C8-P1-C1$ 106.57 (9) $P2-C15-H15A$ 109.5 $O1-P1-C14$ 112.86 (9) $C14-C15-H15B$ 109.5 $C8-P1-C14$ 105.93 (9) $P2-C15-H15B$ 109.5 $C1-P1-C14$ 106.01 (9) $H15A-C15-H15B$ 108.0 $C2-C1-C6$ 119.8 (2) $O2-P2-C15$ 112.96 (9) $C2-C1-P1$ 119.83 (16) $O2-P2-C16$ 113.42 (9)	C14—H14B	0.9900		
O1—P1—C1 113.64 (9) C14—C15—H15A 109.5 C8—P1—C1 106.57 (9) P2—C15—H15A 109.5 O1—P1—C14 112.86 (9) C14—C15—H15B 109.5 C8—P1—C14 105.93 (9) P2—C15—H15B 109.5 C1—P1—C14 106.01 (9) H15A—C15—H15B 108.0 C2—C1—C6 119.8 (2) O2—P2—C15 112.96 (9) C2—C1—P1 119.83 (16) O2—P2—C16 113.42 (9)	O1—P1—C8	111.28 (9)	C14—C15—P2	110.90 (13)
C8—P1—C1 106.57 (9) P2—C15—H15A 109.5 O1—P1—C14 112.86 (9) C14—C15—H15B 109.5 C8—P1—C14 105.93 (9) P2—C15—H15B 109.5 C1—P1—C14 106.01 (9) H15A—C15—H15B 108.0 C2—C1—C6 119.8 (2) O2—P2—C15 112.96 (9) C2—C1—P1 119.83 (16) O2—P2—C16 113.42 (9)	O1—P1—C1	113.64 (9)	C14—C15—H15A	109.5
O1—P1—C14112.86 (9)C14—C15—H15B109.5C8—P1—C14105.93 (9)P2—C15—H15B109.5C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)O2—P2—C15112.96 (9)C2—C1—P1119.83 (16)O2—P2—C16113.42 (9)	C8—P1—C1	106.57 (9)	P2—C15—H15A	109.5
C8—P1—C14 105.93 (9) P2—C15—H15B 109.5 C1—P1—C14 106.01 (9) H15A—C15—H15B 108.0 C2—C1—C6 119.8 (2) O2—P2—C15 112.96 (9) C2—C1—P1 119.83 (16) O2—P2—C16 113.42 (9)	O1—P1—C14	112.86 (9)	C14—C15—H15B	109.5
C1—P1—C14106.01 (9)H15A—C15—H15B108.0C2—C1—C6119.8 (2)O2—P2—C15112.96 (9)C2—C1—P1119.83 (16)O2—P2—C16113.42 (9)	C8—P1—C14	105.93 (9)	P2—C15—H15B	109.5
C2—C1—C6 119.8 (2) O2—P2—C15 112.96 (9) C2—C1—P1 119.83 (16) O2—P2—C16 113.42 (9)	C1—P1—C14	106.01 (9)	H15A—C15—H15B	108.0
C2-C1-P1 119.83 (16) $O2-P2-C16$ 113.42 (9)	C2—C1—C6	119.8 (2)	O2—P2—C15	112.96 (9)
	C2—C1—P1	119.83 (16)	O2—P2—C16	113.42 (9)
C6—C1—P1 120.29 (16) C15—P2—C16 106.51 (9)	C6—C1—P1	120.29 (16)	C15—P2—C16	106.51 (9)
C1—C2—C3 120.7 (2) O2—P2—C23 111.36 (9)	C1—C2—C3	120.7 (2)	O2—P2—C23	111.36 (9)
C1—C2—H2A 119.7 C15—P2—C23 105.90 (9)	C1—C2—H2A	119.7	C15—P2—C23	105.90 (9)
C3—C2—H2A 119.7 C16—P2—C23 106.15 (9)	C3—C2—H2A	119.7	C16—P2—C23	106.15 (9)
C4—C3—C2 119.9 (2) C17—C16—C21 119.10 (18)	C4—C3—C2	119.9 (2)	C17—C16—C21	119.10 (18)
C4—C3—H3A 120.1 C17—C16—P2 121.03 (15)	C4—C3—H3A	120.1	C17—C16—P2	121.03 (15)

supplementary materials

С2—С3—НЗА	120.1	C21—C16—P2	119.68 (14)
C3—C4—C5	120.4 (2)	C18—C17—C16	120.91 (19)
C3—C4—H4A	119.8	С18—С17—Н17А	119.5
С5—С4—Н4А	119.8	С16—С17—Н17А	119.5
C4—C5—C6	121.1 (2)	C19—C18—C17	119.9 (2)
С4—С5—Н5А	119.5	C19—C18—H18A	120.0
С6—С5—Н5А	119.5	C17—C18—H18A	120.0
C5—C6—C1	118.2 (2)	C20—C19—C18	119.64 (19)
C5—C6—C7	119.3 (2)	С20—С19—Н19А	120.2
C1—C6—C7	122.5 (2)	C18—C19—H19A	120.2
С6—С7—Н7А	109.5	C19—C20—C21	121.68 (19)
С6—С7—Н7В	109.5	С19—С20—Н20А	119.2
Н7А—С7—Н7В	109.5	C21—C20—H20A	119.2
С6—С7—Н7С	109.5	C20—C21—C16	118.55 (18)
Н7А—С7—Н7С	109.5	C20—C21—C22	118.90 (18)
H7B—C7—H7C	109.5	C16—C21—C22	122.55 (18)
C13—C8—C9	119.7 (2)	C21—C22—H22A	109.5
C13—C8—P1	122.69 (16)	C21—C22—H22B	109.5
C9—C8—P1	117.64 (16)	H22A—C22—H22B	109.5
C8—C9—C10	120.1 (2)	C21—C22—H22C	109.5
С8—С9—Н9А	119.9	H22A—C22—H22C	109.5
С10—С9—Н9А	119.9	H22B—C22—H22C	109.5
C11—C10—C9	120.2 (2)	C24—C23—C28	119.46 (18)
C11—C10—H10A	119.9	C24—C23—P2	122.50 (15)
C9—C10—H10A	119.9	C28—C23—P2	118.02 (15)
C10-C11-C12	120.2 (2)	C23—C24—C25	120.3 (2)
C10-C11-H11A	119.9	C23—C24—H24A	119.9
C12—C11—H11A	119.9	C25—C24—H24A	119.9
C11—C12—C13	120.5 (2)	C26—C25—C24	120.1 (2)
C11—C12—H12A	119.7	С26—С25—Н25А	120.0
C13—C12—H12A	119.7	C24—C25—H25A	120.0
C8—C13—C12	119.3 (2)	C25—C26—C27	120.3 (2)
C8—C13—H13A	120.4	С25—С26—Н26А	119.8
C12—C13—H13A	120.4	С27—С26—Н26А	119.8
C15-C14-P1	111.86 (14)	C26—C27—C28	119.9 (2)
C15-C14-H14A	109.2	С26—С27—Н27А	120.0
P1-C14-H14A	109.2	С28—С27—Н27А	120.0
C15—C14—H14B	109.2	C23—C28—C27	120.0 (2)
P1-C14-H14B	109.2	C23—C28—H28A	120.0
H14A—C14—H14B	107.9	C27—C28—H28A	120.0
O1—P1—C1—C2	-124.41 (18)	C14—C15—P2—O2	51.52 (16)
C8—P1—C1—C2	112.66 (18)	C14—C15—P2—C16	-73.63 (15)
C14—P1—C1—C2	0.1 (2)	C14—C15—P2—C23	173.66 (14)
O1—P1—C1—C6	52.70 (19)	O2—P2—C16—C17	-131.23 (16)
C8—P1—C1—C6	-70.23 (19)	C15—P2—C16—C17	-6.35 (18)
C14—P1—C1—C6	177.22 (17)	C23—P2—C16—C17	106.19 (16)
C6—C1—C2—C3	-1.8 (3)	O2—P2—C16—C21	43.77 (17)
P1—C1—C2—C3	175.28 (19)	C15—P2—C16—C21	168.64 (15)
C1—C2—C3—C4	0.3 (4)	C23—P2—C16—C21	-78.82 (16)

C2—C3—C4—C5	1.3 (4)	C21—C16—C17—C18	-3.2 (3)
C3—C4—C5—C6	-1.3 (4)	P2-C16-C17-C18	171.82 (15)
C4—C5—C6—C1	-0.2 (3)	C16—C17—C18—C19	-0.3 (3)
C4—C5—C6—C7	178.8 (2)	C17—C18—C19—C20	3.6 (3)
C2—C1—C6—C5	1.8 (3)	C18—C19—C20—C21	-3.3 (3)
P1—C1—C6—C5	-175.33 (16)	C19—C20—C21—C16	-0.2 (3)
C2-C1-C6-C7	-177.2 (2)	C19—C20—C21—C22	-179.76 (19)
P1—C1—C6—C7	5.7 (3)	C17—C16—C21—C20	3.4 (3)
O1—P1—C8—C13	-166.69 (16)	P2-C16-C21-C20	-171.66 (15)
C1—P1—C8—C13	-42.30 (19)	C17—C16—C21—C22	-177.02 (18)
C14—P1—C8—C13	70.29 (19)	P2-C16-C21-C22	7.9 (3)
O1—P1—C8—C9	13.8 (2)	O2—P2—C23—C24	-171.85 (16)
C1—P1—C8—C9	138.15 (17)	C15—P2—C23—C24	65.00 (19)
C14—P1—C8—C9	-109.26 (18)	C16—P2—C23—C24	-47.96 (19)
C13—C8—C9—C10	1.3 (3)	O2—P2—C23—C28	6.53 (18)
P1-C8-C9-C10	-179.16 (18)	C15—P2—C23—C28	-116.62 (17)
C8—C9—C10—C11	0.2 (4)	C16—P2—C23—C28	130.42 (16)
C9—C10—C11—C12	-1.0 (4)	C28—C23—C24—C25	-1.8 (3)
C10-C11-C12-C13	0.3 (4)	P2-C23-C24-C25	176.51 (18)
C9—C8—C13—C12	-2.0 (3)	C23—C24—C25—C26	1.8 (4)
P1-C8-C13-C12	178.48 (17)	C24—C25—C26—C27	-0.8 (4)
C11—C12—C13—C8	1.2 (3)	C25—C26—C27—C28	-0.1 (4)
O1—P1—C14—C15	-50.63 (17)	C24—C23—C28—C27	0.9 (3)
C8—P1—C14—C15	71.38 (16)	P2-C23-C28-C27	-177.55 (17)
C1—P1—C14—C15	-175.64 (14)	C26—C27—C28—C23	0.1 (3)
P1-C14-C15-P2	176.78 (11)		

